In chemistry, resonance, also called mesomerism, is a way of describing Chemical bond in certain molecules or polyatomic ions by the combination of several contributing structures (or forms, also variously known as resonance structures or canonical structures) into a resonance hybrid (or hybrid structure) in valence bond theory. It has particular value for analyzing delocalized electrons where the bonding cannot be expressed by one single Lewis structure. The resonance hybrid is the accurate structure for a molecule or ion; it is an average of the theoretical (or hypothetical) contributing structures.
The resonance hybrid represents the actual molecule as the "average" of the contributing structures, with bond lengths and taking on intermediate values compared to those expected for the individual Lewis structures of the contributors, were they to exist as "real" chemical entities. The contributing structures differ only in the formal apportionment of electrons to the atoms, and not in the actual physically and chemically significant electron or spin density. While contributing structures may differ in formal bond orders and in formal charge assignments, all contributing structures must have the same number of valence electrons and the same spin multiplicity.Practicing chemists familiar with the concepts of resonance and delocalization will often draw just one major contributing structure to implicitly represent a molecule whose structure should be described by invoking a resonance hybrid. For example, a chemist might arbitrarily choose to draw the resonance contributor of NO2– shown on the left, with the understanding that the reader is aware of the other contributor, shown on the right, as well as the implication that the N–O bonds are actually equivalent. This practice is especially prevalent in organic chemistry, where one of the Aromaticity of benzene is frequently chosen to depict the regular hexagonal structure of the molecule.
Because electron delocalization lowers the potential energy of a system, any species represented by a resonance hybrid is more stable than any of the (hypothetical) contributing structures.
Molecules with an extended π system such as linear polyenes and polyaromatic compounds are well described by resonance hybrids as well as by delocalized orbitals in molecular orbital theory.
A non-chemical analogy is illustrative: one can describe the characteristics of a real animal, the narwhal, in terms of the characteristics of two mythical creatures: the unicorn, a creature with a single horn on its head, and the leviathan, a large, whale-like creature. The narwhal is not a creature that goes back and forth between being a unicorn and being a leviathan, nor do the unicorn and leviathan have any physical existence outside the collective human imagination. Nevertheless, describing the narwhal in terms of these imaginary creatures provides a reasonably good description of its physical characteristics.
Due to confusion with the physical meaning of the word resonance, as no entities actually physically "resonate", it has been suggested that the term resonance be abandoned in favor of delocalization and resonance energy abandoned in favor of delocalization energy. A resonance structure becomes a contributing structure and the resonance hybrid becomes the hybrid structure. The double headed arrows would be replaced by commas to illustrate a set of structures, as arrows of any type may suggest that a chemical change is taking place.
In diagrams, contributing structures are typically separated by double-headed arrows (↔). The arrow should not be confused with the right and left pointing equilibrium arrow (). All structures together may be enclosed in large square brackets, to indicate they picture one single molecule or ion, not different species in a chemical equilibrium.
Alternatively to the use of contributing structures in diagrams, a hybrid structure can be used. In a hybrid structure, pi bonds that are involved in resonance are usually pictured as curves or dashed lines, indicating that these are partial rather than normal complete pi bonds. In benzene and other aromatic rings, the delocalized pi-electrons are sometimes pictured as a solid circle.
The resonance proposal also helped explain the number of isomers of benzene derivatives. For example, Kekulé's structure would predict four dibromobenzene isomers, including two ortho isomers with the brominated carbon atoms joined by either a single or a double bond. In reality there are only three dibromobenzene isomers and only one is ortho, in agreement with the idea that there is only one type of carbon-carbon bond, intermediate between a single and a double bond.
The mechanism of resonance was introduced into quantum mechanics by Werner Heisenberg in 1926 in a discussion of the quantum states of the helium atom. He compared the structure of the helium atom with the classical system of resonating coupled harmonic oscillators. In the classical system, the coupling produces two modes, one of which is lower in frequency than either of the uncoupled vibrations; quantum mechanically, this lower frequency is interpreted as a lower energy. Linus Pauling used this mechanism to explain the partial valence of molecules in 1928, and developed it further in a series of papers in 1931-1933. See last paragraph of section 1. In this source, Pauling first mentions related papers by Slater and Hückel in 1931, and then cites his own key papers: and subsequent papers in 1932–33. The alternative term mesomerism popular in German and French publications with the same meaning was introduced by C. K. Ingold in 1938, but did not catch on in the English literature. The current concept of mesomeric effect has taken on a related but different meaning. The double headed arrow was introduced by the German chemist Fritz Arndt who preferred the German phrase zwischenstufe or intermediate stage.
Resonance theory dominated over competing Hückel method for two decades thanks to being relatively easier to understand for chemists without fundamental physics background, even if they couldn't grasp the concept of quantum superposition and confused it with tautomerism. Pauling and Wheland themselves characterized Erich Hückel's approach as "cumbersome" at the time, and his lack of communication skills contributed: when Robert Robinson sent him a friendly request, he responded arrogantly that he is not interested in organic chemistry.
In the Soviet Union, resonance theory – especially as developed by Pauling – was attacked in the early 1950s as being contrary to the Marxist principles of dialectical materialism, and in June 1951 the Soviet Academy of Sciences under the leadership of Alexander Nesmeyanov convened a conference on the chemical structure of organic compounds, attended by 400 physicists, chemists, and philosophers, where "the pseudo-scientific essence of the theory of resonance was exposed and unmasked".
A maximum of eight valence electrons is strict for the Period 2 elements Be, B, C, N, O, and F, as is a maximum of two for H and He and effectively for Li as well.Lithium is always found as Li+ (1s2), a duet, in ionic compounds. In compounds like CH3Li with some degree of covalency, bonding is achieved primarily with the 2s orbital, with some contribution from a 2p orbital. (This bonding scheme is used in condensed phase aggregates like (CH3Li)4 as well, leading to a higher coordination number for lithium.) Thus, in principle, up to an octet can be accommodated. Nevertheless, the formal number of valence electrons around Li never exceeds two, unless weak donor-acceptor interactions with neutral ligands (e.g., solvent molecules, often omitted from Lewis structures) are included. The issue of expansion of the valence shell of third period and heavier main group elements is controversial. A Lewis structure in which a central atom has a valence electron count greater than eight traditionally implies the participation of d orbitals in bonding. However, the consensus opinion is that while they may make a marginal contribution, the participation of d orbitals is unimportant, and the bonding of so-called hypervalent molecules are, for the most part, better explained by charge-separated contributing forms that depict three-center four-electron bonding. Nevertheless, by tradition, expanded octet structures are still commonly drawn for functional groups like , , and Wittig reaction, for example. Regarded as a formalism that does not necessarily reflect the true electronic structure, such depictions are preferred by the IUPAC over structures featuring partial bonds, charge separation, or dative bonds.
Equivalent contributors contribute equally to the actual structure, while the importance of nonequivalent contributors is determined by the extent to which they conform to the properties listed above. A larger number of significant contributing structures and a more voluminous space available for delocalized electrons lead to stabilization (lowering of the energy) of the molecule.
In furan a lone pair of the oxygen atom interacts with the π orbitals of the carbon atoms. The depict the permutation of delocalized π electrons, which results in different contributors.
For hypervalent molecules, the rationalization described above can be applied to generate contributing structures to explain the bonding in such molecules. Shown below are the contributing structures of a 3c-4e bond in xenon difluoride.
The diborane molecule is described by contributing structures, each with electron-deficiency on different atoms. This reduces the electron-deficiency on each atom and stabilizes the molecule. Below are the contributing structures of an individual 3c-2e bond in diborane.
This observation of greater delocalization in less stable molecules is quite general. The excited states of conjugated are stabilized more by conjugation than their ground states, causing them to become organic dyes.
A well-studied example of delocalization that does not involve π electrons (hyperconjugation) can be observed in the non-classical 2-Norbornyl cation Another example is methanium (). These can be viewed as containing three-center two-electron bonds and are represented either by contributing structures involving rearrangement of σ electrons or by a special notation, a Y that has the three nuclei at its three points.
Delocalized electrons are important for several reasons; a major one is that an expected chemical reaction may not occur because the electrons delocalize to a more stable configuration, resulting in a reaction that happens at a different location. An example is the Friedel–Crafts alkylation of benzene with 1-chloro-2-methylpropane; the carbocation rearranges to a tert-butyl group stabilized by hyperconjugation, a particular form of delocalization.
The complete hydrogenation of benzene to cyclohexane via 1,3-cyclohexadiene and cyclohexene is exothermic; 1 mole of benzene delivers 208.4 kJ (49.8 kcal).
Hydrogenation of one mole of double bonds delivers 119.7 kJ (28.6 kcal), as can be deduced from the last step, the hydrogenation of cyclohexene. In benzene, however, 23.4 kJ (5.6 kcal) are needed to hydrogenate one mole of double bonds. The difference, being 143.1 kJ (34.2 kcal), is the empirical resonance energy of benzene. Because 1,3-cyclohexadiene also has a small delocalization energy (7.6 kJ or 1.8 kcal/mol) the net resonance energy, relative to the localized cyclohexatriene, is a bit higher: 151 kJ or 36 kcal/mol.
This measured resonance energy is also the difference between the hydrogenation energy of three 'non-resonance' double bonds and the measured hydrogenation energy:
Regardless of their exact values, resonance energies of various related compounds provide insights into their bonding. The resonance energies for pyrrole, thiophene, and furan are, respectively, 88, 121, and 67 kJ/mol (21, 29, and 16 kcal/mol). Thus, these heterocycles are far less aromatic than benzene, as is manifested in the lability of these rings.
For example, in benzene, valence bond theory begins with the two Kekulé structures which do not individually possess the sixfold symmetry of the real molecule. The theory constructs the actual wave function as a linear superposition of the wave functions representing the two structures. As both Kekulé structures have equal energy, they are equal contributors to the overall structure – the superposition is an equally weighted average, or a 1:1 linear combination of the two in the case of benzene. The symmetric combination gives the ground state, while the antisymmetric combination gives the first excited state, as shown.
In general, the superposition is written with undetermined coefficients, which are then variationally optimized to find the lowest possible energy for the given set of basis wave functions. When more contributing structures are included, the molecular wave function becomes more accurate and more excited states can be derived from different combinations of the contributing structures.
The contributing structures in the VB model are particularly useful in predicting the effect of substituents on π systems such as benzene. They lead to the models of contributing structures for an electron-withdrawing group and electron-releasing group on benzene. The utility of MO theory is that a quantitative indication of the charge from the π system on an atom can be obtained from the squares of the weighting coefficient ci on atom C i. Charge qi ≈ c. The reason for squaring the coefficient is that if an electron is described by an AO, then the square of the AO gives the electron density. The AOs are adjusted (normalized) so that AO2 = 1, and qi ≈ ( ciAO i)2 ≈ c. In benzene, qi = 1 on each C atom. With an electron-withdrawing group qi < 1 on the ortho and para C atoms and qi > 1 for an electron-releasing group.
+ WAPS values of anions of common acids and WANS values of cations of common bases | |||
(C2F5SO2)2NH | 2.0 | Triphenylphosphine | 2.1 |
(CF3)3COH | 3.6 | Phenyl tetramethylguanidine | 2.5 |
Picric acid | 4.3 | Tripropylamine | 2.6 |
2,4-Dinitrophenol | 4.9 | MTBD (7-Methyl-triazabicyclodecene) | 2.9 |
Benzoic acid | 7.1 | DBU (1,8-Diazabicycloundec-7-ene) | 3.0 |
Phenol | 8.8 | TBD (Triazabicyclodecene) | 3.5 |
Acetic acid | 16.1 | Dimethylaniline | 4.7 |
Hydrogen iodide | 21.9 | Pyridine | 7.2 |
Hydrogen bromide | 29.1 | Aniline | 8.2 |
HCl | 35.9 | Propylamine | 8.9 |
|
|